MODELING UPDATE

Justin Crow, MPA

UVA COVID-19 Model-Background

- Model is developed by the UVA Biocomplexity Institute
- Model has evolved
 - Current methodology: "Adaptive Fitting"
 - Based on observed cases in each health district
 - Responsive to current trends → week-to-week volatility
- Models thrive on more & better data, and the model improves every week.
- Behavioral and policy responses drive changes in current trends

Weekly Cases per 100k Residents 11/05/2020

Weekly Cases per 100k Residents 11/12/2020

Case rate trends in neighboring states have grown

Over the last 7 days, Virginia had 17.2 (+12% from last week) new confirmed cases per day per 100,000

Very high case loads (>20):

- Tennessee (49.8 new cases per 100k, +57% from last week)
- Kentucky (42.4, Kentucky +12%)
- West Virginia (29.7, +24%)
- North Carolina (25.6, +64%)
- Maryland (21.1, +46%)

High case loads (10-20):

District of Columbia (13.1, +3%)

Lower case loads (<10): None

These data were updated November 12th and represent a seven-day average of the previous week

Weekly Cases per 100k Residents

These data were updated November 10th and represent a seven-day average of the previous week

Health Districts in Surge

Status	# Districts (last week)
Declining	2 (5)
Plateau	8 (10)
Slow Growth	17 (17)
In Surge	8 (3)

Trajectory	Description	Weekly Case Rate (per 100K) bounds
Declining	Sustained decreases following a recent peak	below -0.9
Plateau	Steady level with minimal trend up or down	above -0.9 and below 0.5
Slow Growth	Sustained growth not rapid enough to be considered a Surge	above 0.5 and below 2.5
In Surge	Currently experiencing sustained rapid and significant growth	2.5 or greater

State Level Trajectories

24 States in Surge Trajectories

Changes in Case Detection - Symptom Onset to Diagnosis

Days to Diagnosis

- April = 8.6 days
- May = 5.6 days
- June = 6.0 days
- July = 6.3 days
- August = 4.8 days
- Sept = 4.4 days
- Oct = 4.2 days
- Overall = 5.7 days

Reproduction Rate

R0=1: Steady Rate

Phase II Begins*

0

Region	R _e Oct 31	Weekly Change
State-wide	1.005	-0.082
Central	0.929	-0.151
Eastern	1.100	0.054
Far SW	0.986	-0.380
Near SW	0.952	-0.072
Northern	1.060	-0.032
Northwest	1.000	-0.074

MUNIVERSITY VIRGINIA

Phase III Begins

Aug 21 Aug 31 Sep 10 Sep 20 Sep 30

Oct 10

Oct 20

Oct 30

Preliminary

BIOCOMPLEXITY INSTITUTE

Projections

Current Course

- "Adaptive fitting" approach
- Feb 14 (Peak): 25,500
- Jan 17: 24,000

Two "what-if" scenarios: transmissibility changes beginning on November 26

- More Control(15% decrease)
 - Dec 6(Peak): 15,000
- Less Control (15% increase)
 - Feb 14 (Peak): 47,000
 - Jan 17: 40,000

Virginia Projections

Hospital Demand and Capacity by Region

Capacities by Region - Adaptive-Less Control

COVID-19 capacity ranges from 80% (dots) to 120% (dash) of total beds

- Based on Adaptive-Less Control scenario
- Does NOT take flu season into account

District Level Projections: Adaptive

Cases per 100k

COVID-19 Presence Likelihood

Based on zip code point prevelence for week ending 2020-11-08

COVID-19 Presence Likelihood

Based on zip code point prevelence for week ending 2020-11-08

There are interventions that could be applied to mitigate Thanksgiving spread

Research and data indicate that the 18- to 29-year-old population can be a major source of spread

- Research has found that this population was instrumental in the early spread of COVID in the U.S.
- Studies also indicate that cases in this population peak two- to four-weeks before other age groups during many county-level outbreaks

Targeting the 18- to 29-year-old population may be an efficient way to reduce the spread

- Testing should be greatly expanded for this population prior to Thanksgiving
- Colleges and universities with elevated case levels should consider remaining open during Thanksgiving for students that have been exposed to COVID to reduce spread off-campus

There are also broader policy responses that could be applied

- Mandatory testing at airports and other transit points could reduce the spread from out-of-state travelers
- A shutdown of at least two weeks paired with expanded testing in mid-November could reduce levels prior to Thanksgiving
- Alternatively, targeted shutdowns may be useful and more widely accepted
- A short shutdown may be a useful mitigation after Thanksgiving to contain spread prior to the December holidays

Where to find modeling results

VDH COVID-19 Data Insights

https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/

- Model Explorer (Wed)
- UVA Biocomplexity Institute Slides (Fri)
- RAND Slides (Fri)
- Weekly Update (Fri)
- COVID-19 Medical Resource Demand Dashboard

https://covid19.biocomplexity.virginia.edu/dashboards

- Hospital Capacity Scenarios
- Internal Dashboards
 - Transmission Rates (RO) (Wed)
 https://dataviz.vdh.virginia.gov/#/views/TransmissionRate/Dashboard1
 - Google Mobility Report (Wed)
 https://dataviz.vdh.virginia.gov/views/GoogleMobility/Dashboard1
 - Detailed Internal Model (Wed)

https://dataviz.vdh.virginia.gov/views/DailyModelInternal_15908727184890/AllModelResults?iframeSizedToWindow=true&:embed=y&:showAppBanner=false&:display_count=no&:showVizHome=no

